MATH 54 - HINTS TO HOMEWORK 1

PEYAM TABRIZIAN

Here are a couple of hints to Homework 1! Enjoy :)

1. Section 1.1: Systems of Linear equations

1.1.11, 1.1.13. All you have to do are row-reductions until it is easier to see whether the equation has a solution or not. In particular, if one of the rows is of the form:

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & b
\end{array}\right]
$$

then the system has no solution!
1.1.23.
(a) T
(b) F (5 rows, 6 columns)
(c) T
(d) T

1.1.24.

(a) T (that's the point of EROS)
(b) Very F
(c) F (no sol)
(d) T
1.1.29. Just say how to obtain the second matrix from the first. For the reverse statement, how do you obtain the first matrix from the second?

Section 1.2: Row Reduction and Echelon Forms

1.2.7, 1.2.11, 1.2.13. Use Row-Reduction! I would strongly suggest for you to use the Reduced row-echelon form because that makes it easier to solve your system! Be careful about how many rows you eliminate in 1.2.11, don't eliminate all the rows, just two of them! In this case, there are 2 free variables!
1.2.21.
(a) F (the RREF is unique)
(b) F? (it also applies to coefficient matrices. Here it depends how you argue it)
(c) T
(d) T
(e) F (it just means one variable is 0)

[^0]1.2.23, 1.2.24. In those 2 problems, the following fact will help you solve the problem:

Fact: A system is consistent if and only if in the row echelon form of the augmented matrix there is no row of the form

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & \cdots & b
\end{array}\right]
$$

Where $b \neq 0$.
For 1.2.23, it's yes because there is no row of the above form, for 1.2 .24 the answer is no because there is a row of the above form!

SECTION 1.3: Vector EQUATIONS

1.3.5, 1.3.9. For 1.3 .5 , your answer should be of the same form as 1.3 .9 , and vice-versa
1.3.11. In other words, does the system $x_{1} \mathbf{a}_{\mathbf{1}}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b}$ (where the unknowns are x_{1}, x_{2}, x_{3}) have a nonzero solution?
1.3.13. This is the same as 1.3 .11 , where \mathbf{a}_{1} is the first column of A, \mathbf{a}_{2} is the second column etc. In other words just form the augmented matrix $[A \mid \mathbf{b}]$ and row-reduce!
1.3.15. Span $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is just the set of linear combinations of $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$. So for example, the following vectors are in that Span: $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}, 2 \mathbf{v}_{\mathbf{1}}, 3 \mathbf{v}_{\mathbf{1}}-2 \mathbf{v}_{\mathbf{2}}$, etc.

1.3.23.

(a) T
(b) F
(c) T
(d) T
(e) F (it could be a line, for example if $\mathbf{u}=\mathbf{v}$, it could even be the $\mathbf{0}$ vector)

1.3.24.

(a) T
(b) T
(c) F
(d) T (yes, but it contains other things too, like \mathbf{v}, the line through \mathbf{v} and the origin, etc.)
(e) T

Section 1.4: The matrix equation $A x=b$

1.4.3. Look at page 43
1.4.7. In other words, just erase x_{1}, x_{2}, x_{3} and put the resulting 3 column vectors in a matrix
1.4.11. Row-reduce!
1.4.23.
(a) F (matrix equation)
(b) T
(c) F (not quite, there could be a pivot in the last column, such as $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$)
(d) T
(e) T
(f) T (if A had a pivot position in each row, then there can't be a row of the form $\left[\begin{array}{cccc}0 & 0 & 0 & b\end{array}\right]$ in the augmented matrix corresponding to the equation $A \mathbf{x}=\mathbf{b}$, compare with 1.2.23)
1.4.24.
(a) T
(b) T
(c) T
(d) T
(e) F
(f) T (otherwise the equation would be consistent for all \mathbf{b})

SECTION 1.5: Solution sets of Linear systems

Note: You can easily do the problems in this section without reading it, it's basically a review of how to solve linear equations!
1.5.9, 1.5.1. Row-reduce!
1.5.13. Add the trivial equation $x_{3}=x_{3}$ to your list of equations, and then you find that the solution set is of the form: $\mathbf{x}=\left[\begin{array}{c}5 \\ -2 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}4 \\ -7 \\ 1\end{array}\right]$
1.5.23.
(a) $\mathbf{T}(\mathbf{x}=\mathbf{0}$ is always a solution)
(b) \mathbf{T} ? (the question is a bit weirdly phrased)
(c) \mathbf{F} (no, it means that $\mathbf{x}=\mathbf{0}$ solved the equation)
(d) \mathbf{F} (\mathbf{p} and \mathbf{v} should be flipped)
(e) \mathbf{T}
1.5.24.
(a) \mathbf{F} (nontrivial means not all entries are 0 . For a counterexample, let A be the zero matrix!)
(b) T
(c) \mathbf{T} ! (this got me too! But if $\mathbf{x}=\mathbf{0}$ is a solution, then $\mathbf{b}=\mathbf{0}$ and the equation is homogeneous)
(d) \mathbf{F} (no, draw a picture, or see page 55)
(e) \mathbf{T} (see page 55)

[^0]: Date: Thursday, June 21st, 2012.

